Determinants of audit automation adoption among audit firms in Ghana
DOI:
https://doi.org/10.47963/jobed.v13i.1731Keywords:
Audit automation adoption, UTAUT, audit firms, Ghana, PLS-SEM, IPMAAbstract
Automation is widely recognised to be revolutionising the auditing profession. Despite the known benefits, it is reported that auditors are not fully leveraging the potential value of certain automated tools and techniques. To understand why, this study aims to draw on the unified theory of acceptance and use of technology (UTAUT) to empirically examine the determinants of audit automation adoption by audit firms in Ghana. The study conforms to the positivist paradigm which agrees with the quantitative approach and an explanatory research design; structured questionnaires were administered to 190 respondents from various audit firms in good standing with the Institute of Chartered Accountants Ghana (ICAG) using Google Forms. Partial least squares structural equation modelling (PLS-SEM) via Smart PLS was used for the analysis and testing of the hypotheses. Importance performance map analysis (IPMA) was conducted to enhance a deeper understanding of the findings. Performance expectancy and effort expectancy have a positive and significant influence on audit automation adoption by audit firms in Ghana. This implies that auditors will be willing to use audit automation when they perceive that it will enhance their performance and that the use of audit automation will mean less effort will be required from the auditors. The study contributes to the literature by advancing the understanding of the importance of performance expectancy and effort expectancy as determinants of audit automation adoption. This extends the theoretical understanding of the UTAUT model.
Downloads
References
Ahmi, A., & Kent, S. (2012). The utilisation of generalized audit software (GAS) by external auditors. Managerial Auditing Journal, Emerald Insight, 28(2), 88-113. https://doi.org/10.1108/02686901311284522
Al-Hiyari, A., Al Said, N.& Hattab, E. (2019). Factors that influence the use of computer-assisted audit techniques (CAATs) by internal auditors in Jordan. Academy of Accounting and Financial Studies Journal, 23(3) 1-15. https://doi.org/1528-2635-23-3-393
Appelbaum, D. A., Kogan, A., and Vasarhelyi, M. A. (2018). Analytical procedures in external auditing: A comprehensive literature survey and framework for external audit analytics. Journal of Accounting Literature, 40(1), 83-101. https://doi.org/10.1016/j.acclit.2018.01.001
Appelbaum, D., Budnik, S., & Vasarhelyi, M. (2020). Auditing and accounting during and after the COVID-19 crisis. The CPA Journal, 90(6), 14-19. Retrieved from https://www.proquest.com/scholarly-journals/auditing-accounting-during-after-covid-19-crisis/docview/2420174156/se-2
Awuah, B., Onumah, J. M., & Duho, K. C. T. (2022). Determinants of adoption of computer‐assisted audit tools and techniques among internal audit units in Ghana. The Electronic Journal of Information Systems in Developing Countries, 88(2), https://doi.org/10.1002/isd2.12203
Benitez, J., Henseler, J., Castillo, A.,& Schuberth, F. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information and Management, 57(2). https://doi.org/10.1016/j.im.2019.05.003
Bierstaker, J., Janvrin, D., & Lowe, D. J. (2014), What factors influence auditors' use of computer-assisted audit techniques? Advances in Accounting, 30(1), 67-74. https://doi.org/10.1016/j.adiac.2013.12.005
Blumberg, B., Cooper, D., & Schindler, P. (2014), EBOOK: Business research methods, McGraw Hill.
Braun, R. L., & Davis, H. E. (2003). Computer‐assisted audit tools and techniques: analysis and perspectives. Managerial Auditing Journal, 18(9), 725-731. https://doi.org/10.1108/02686900310500488
Byrnes, P. E., Al-Awadhi, A., Gullvist, B., Brown-Liburd, H., Teeter, R., Warren, J. D., & Vasarhelyi, M. (2018), Evolution of Auditing: From the Traditional Approach to the Future Audit, In Continuous Auditing: Theory and Application, Emerald Publishing 285-297. https://doi.org/10.1108/978-1-78743-413-420181014
Cohen, L., Manion, L., & Morrison, K. (2017), Action research, In Research methods in education, Routledge, 440-456. https://doi.org/10.4324/9781315456539
Cohen, M., & Rozario, A. (2019), Exploring the use of robotic process automation (RPA) in substantive audit procedures, The CPA Journal 89(7), 49-53.
Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.
Curtis, M. B., & Payne, E. A. (2014). Modelling voluntary CAAT utilization decisions in auditing. Managerial Auditing Journal 29( 4) https://doi.org/10.1108/MAJ-07-2013-0903
Dasinapa, M. B., & Ermawati, Y. (2024). Insights into Emerging Trends Shaping the Future of Audit and Assurance. Advances in Managerial Auditing Research, 2(2), 75-86.
Doğanay, D. (2019). Identifying factors affecting auditors’ adoption of computer-assisted audit tools and techniques (caatts): an empirical ınvestigation (Master's thesis, Middle East Technical University).
Elommal, N., & Manita, R. (2022), How Blockchain Innovation could affect the Audit Profession: A Qualitative Study. Journal of Innovation Economics Management, 37(1), 37-63.
Emett, S. A., Kaplan, S. E., Mauldin, E., & Pickerd, J. S. (2021). Auditing with data and analytics: External reviewers' judgments of audit quality and effort. Available at SSRN 3544973. http://dx.doi.org/10.2139/ssrn.3544973
Ferri, L., Spanò, R., Ginesti, G., & Theodosopoulos, G. (2021). Ascertaining auditors’ intentions to use blockchain technology: Evidence from the Big 4 accountancy firms in Italy”, Meditari Accountancy Research, 29(5), 1063-1087. https://doi.org/10.1108/MEDAR-03-2020-0829
Fornell, C. & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error, Journal of Marketing Research 18(1), 39-50. https://doi.org/10.2307/3151312
Fotoh, L. E., & Lorentzon, J. I. (2023). Audit digitalization and its consequences on the audit expectation gap: A critical perspective”, Accounting Horizons, 37(1), 43-69. https://doi.org/10.2308/HORIZONS-2021-027
Ganapathy, V. (2023). AI in auditing: A comprehensive review of applications, benefits and challenges. Shodh Sari-An International Multidisciplinary Journal, 2(4), 328-343.
Gonzalez, G. C., Sharma, P. N., & Galletta, D. F. (2012). The antecedents of the use of continuous auditing in the internal auditing context. International Journal of Accounting Information Systems, 13(3), 248-262. https://doi.org/10.1016/j.accinf.2012.06.009
Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., & Altman, D. G. (2016). Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. European Journal of Epidemiology, 31, 337-350. https://doi.org/10.1007/s10654-016-0149-3
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
Handoko, B. L., Lindawati, A. S. L., & Mustapha, M. (2020). Application of computer-assisted audit techniques in a public accounting firm”, International Journal of Management, 11(5), 222-229. https://doi.org/10.34218/IJM.11.5.2020.022
Harman, H. H., & Harman, H. H. (1976), Modern factor analysis. University of Chicago Press.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modelling. Journal of the Academy of Marketing Science. 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8
Institute of Chartered Accountants England and Wales. (2018), “Artificial Intelligence and the Future of Accountancy, Available via: https://www.icaew.com/media/corporate/files/technical/informationtechnology/technology/artificial-intelligence-report.ashx?la=en.
Institute of Chartered Accountants, Ghana [ICAG] (2022). https://icagh.org/ list-of-licensed-firms/
Islam, S., & Stafford, T. (2022). Factors associated with the adoption of data analytics by internal audit function. Managerial Auditing Journal, 37(2), 193-223. https://doi.org/ 10.1108/MAJ-04-2021-3090
Janvrin, D., Bierstaker, J., & Lowe, D. J. (2008). An examination of audit information technology use and perceived importance, Accounting Horizons, 22(1), 1-21. https://doi.org/10.2308/acch.2008.22.1.1
Kang, Y. J., & Piercey, M. D. (2020). Would an Audit Judgment Rule Improve Audit Committee Oversight and Audit Quality? Current Issues in Auditing, 14(1), 16-25. https://doi.org/10.2308/ciia-52644
Kend, M., & Nguyen, L. A. (2020). Big data analytics and other emerging technologies: the impact on the Australian audit and assurance profession, Australian Accounting Review, 30(4), 269-282. https://doi.org/10.1111/auar.12305
Kneusel, R. T. (2018). Random numbers and computers, Cham (CH): Springer, 239. https://doi.org/10.1007/978-3-319-77697-2
Li, H., Dai, J., Gershberg, T., & Vasarhelyi, M. A. (2018). Understanding usage and value of audit analytics for internal auditors: An organizational approach, International Journal of Accounting Information Systems, 28, 59-76. https://doi.org/10.1016/j.accinf.2017.12.005
Mahzan, N., & Lymer, A. (2014), “Examining the adoption of computer-assisted audit tools and techniques: Cases of generalized audit software use by internal auditors”, Managerial Auditing Journal, 29(4). https://doi.org/10.1108/MAJ-05-2013-0877
Manson, S., McCartney, S., Sherer, M., & Wallace, W. A. (1998). Audit automation in the UK and the US: A comparative study”, International Journal of Auditing, Vol. 2, No. 3, pp. 233-246. https://doi.org/10.1111/1099-1123.00042
Moffitt, K. C., Rozario, A. M., and Vasarhelyi, M. A. (2018), Robotic process automation for auditing. Journal of Emerging Technologies in Accounting, 15(1), 1-10. https://doi.org/10.2308/jeta-10589
Owino, B., and Musuva, P. (2021). Empirical Assessment of Improved Audit Quality Factors Using Computer-Assisted Audit Tools and Techniques (Caatts). Journal of Language, Technology and Entrepreneurship in Africa, 12(2), 147-171.
Pallant, J. (2020). SPSS survival manual: A step-by-step guide to data analysis using IBM SPSS. McGraw-Hill Education (UK). https://doi.org/10.4324/9781003117452
Pedrosa, I., Costa, C. J., & Aparicio, M. (2020). Determinants adoption of computer-assisted auditing tools (CAATs). Cognition, Technology and Work 22(3), 565-583. https://doi.org/10.1007/s10111-019-00581-4
Pimentel, J. L. (2019). Some biases in Likert scaling usage and its correction. International Journal of Science: Basic and Applied Research (IJSBAR), 45(1), 183-191. Retrieved from https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/9874
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioural research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879. https://doi.org/10.1037/0021-9010.88.5.879
Pratama, F. W., & Komariyah, E. F. (2023). Examining the Auditors’ Acceptance of Big Data Analytics Technology Platform: Evidence from Government Auditors in Indonesia”, The Indonesian Journal of Accounting Research, 26(2), 273-302.
Ramen, M., Jugurnath, B., & Ramhit, P. (2015). UTR-CTOE: a new paradigm explaining CAAT adoption, Journal of Modern Accounting and Auditing, 11(12), 615-631. https://doi.org/10.17265/1548-6583/2015.12.001
Ringle, C. M., & Sarstedt, M. (2016). Gain more insight from your PLS-SEM results: The importance-performance map analysis. Industrial management and data systems, 116(9), 1865-1886. https://doi.org/10.1108/IMDS-10-2015-0449
Rosli, K., Yeow, P. H., & Siew, E. G. (2012). Factors influencing audit technology acceptance by audit firms: A new I-TOE adoption framework. Journal of Accounting and Auditing, 1-11. https://doi.org/10.5171/2012.876814
Sarstedt, M., Hair Jr, J. F., Cheah, J. H., Becker, J. M., & Ringle, C. M. (2019). How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australasian Marketing Journal (AMJ), 27(3), 197-211. https://doi.org/10.1016/j.ausmj.2019.05.003
Sarstedt, M., Hair, J. F., Pick, M., Liengaard, B. D., Radomir, L., and Ringle, C. M. (2022), “Progress in partial least squares structural equation modelling use in marketing research in the last decade”, Psychology and Marketing, 39(5), 1035-1064. https://doi.org/10.1002/mar.21640
Serpeninova, Y., Makarenko, S., & Litvinova, M. (2020). Computer-assisted audit techniques: Classification and implementation by auditor. Public Policy and Accounting, 1 (1), 44-49.
Siew, E. G., Rosli, K., & Yeow, P. H. (2020). Organizational and environmental influences in the adoption of computer-assisted audit tools and techniques (CAATTs) by audit firms in Malaysia. International Journal of Accounting Information Systems, 36, https://doi.org/10.1016/j.accinf.2019.100445
Tansil, A. Y. M., Widuri, R., Gui, A., & Ali, M. M. (2019). Generalised Audit Software use by external auditor: An empirical examination from UTAUT. International Journal of Innovation, Creativity and Change, 5(2), 887-908.
Venkatesh, V., & Bala, H. (2012). Adoption and impacts of inter-organizational business process standards: Role of partnering synergy”, Information Systems Research, 23(4), 1131-1157. https://doi.org/10.1287/isre.1110.0404
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478. https://doi.org/10.2307/30036540
Zhang, C. A., Thomas, C., & Vasarhelyi, M. A. (2022), “Attended Process Automation in Audit: A Framework and A Demonstration”, Journal of Information Systems, 36(2), 101-124. https://doi.org/10.2308/ISYS-2020-073
Zikmund, W. G., Babin, B. J., Carr, J. C., & Griffin, M. (2013). Business research methods. Cengage Learning.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Cornelius Adorm-Takyi, George Tackie , Anthony Adu-Asare Idun

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.